Scientist Create New Most Accurate Atomic Clock

Scientist Create New Most Accurate Atomic Clock

Marti/JILA

National Institute of Standards and Technology (NIST) researchers developed a record-setting strontium atomic clock. The clock achieves precision and stability levels that now mean the clock would neither gain nor lose one second in some 15 billion years.

Forget the Apple Watch. There is a new atomic clock that will not show the wrong time for about 15 billion years. Researchers at the National Institute of Standards and Technology (NIST) developed a record-setting strontium atomic clock that has achieved precision and stability levels that now mean the clock would neither gain nor lose one second in some 15 billion years. This is about the age of the universe.

Precision timekeeping has broad potential impacts on advanced communications, positioning technologies (such as GPS) and many other technologies. Besides keeping future technologies on schedule, the clock has potential applications that go well beyond simply marking time. Examples include a sensitive altimeter based on changes in gravity and experiments that explore quantum correlations between atoms.

The experimental strontium lattice clock at JILA, a joint institute of NIST and the University of Colorado Boulder, is now more than three times as precise as it was last year, when it set the previous world record. Precision refers to how closely the clock approaches the true resonant frequency at which the strontium atoms oscillate between two electronic energy levels. The clock’s stability– how closely each tick matches every other tick–also has been improved by almost 50%, another world record.

The JILA clock is now good enough to measure tiny changes in the passage of time and the force of gravity at slightly different heights. Einstein predicted these effects in his theories of relativity, which mean, among other things, that clocks tick faster at higher elevations. Many scientists have demonstrated this, but with less sensitive techniques.

“Our performance means that we can measure the gravitational shift when you raise the clock just 2 centimeters on the Earth’s surface,” JILA/NIST Fellow /7/Ye says. “I think we are getting really close to being useful for relativistic geodesy.”

Relativistic geodesy is the idea of using a network of clocks as gravity sensors to make 3D precision measurements of the shape of the Earth. Ye agrees with other experts that, when clocks can detect a gravitational shift at 1 centimeter differences in height–just a tad better than current performance–they could be used to achieve more frequent geodetic updates than are possible with conventional technologies such as tidal gauges and gravimeters.

In the JILA/NIST clock, a few thousand atoms of strontium are held in a 30-by-30 micrometer column of about 400 pancake-shaped regions formed by intense laser light called an optical lattice. JILA and NIST scientists detect strontium’s “ticks” (430 trillion per second) by bathing the atoms in very stable red laser light at the exact frequency that prompts the switch between energy levels.

The JILA group made the latest improvements with the help of researchers at NIST’s Maryland headquarters and the Joint Quantum Institute (JQI). Those researchers contributed improved measurements and calculations to reduce clock errors related to heat from the surrounding environment, called blackbody radiation. The electric field associated with the blackbody radiation alters the atoms’ response to laser light, adding uncertainty to the measurement if not controlled.

To help measure and maintain the atoms’ thermal environment, NIST’s Wes Tew and Greg Strouse calibrated two platinum resistance thermometers, which were then installed in the clock’s vacuum chamber in Colorado. Researchers also built a radiation shield to surround the atom chamber, which allowed clock operation at room temperature rather than much colder, cryogenic temperatures.

“The clock operates at normal room temperature,” Ye notes. “This is actually one of the strongest points of our approach, in that we can operate the clock in a simple and normal configuration while keeping the blackbody radiation shift uncertainty at a minimum.”

In addition, JQI theorist Marianna Safronova used the quantum theory of atomic structure to calculate the frequency shift due to blackbody radiation, enabling the JILA team to better correct for the error.

The findings have been published in “A New Era in Atomic Clocks” on the NIST site. 



Comments

Share this Story

Follow Us
Follow I4U News on Twitter

Follow I4U News on Facebook

You Might Also Like

Read the Latest from I4U News

Comments


blog comments powered by Disqus

Back to Top , Read the Latest Stories

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *