Stanford Develops Aluminum Battery That Charges In 60 Seconds

Stanford develops Aluminum Battery that Charges in 60 Seconds

Could this be the battery breakthrough that the world badly needs?

A new battery based on Aluminum shows interesting promise to replace today’s problematic lithium and alkaline batteries. Stanford University researches invented the first high-performance aluminum battery that’s fast-charging, long-lasting and inexpensive.

“We have developed a rechargeable aluminum battery that /4/replace existing storage devices, such as alkaline batteries, which are bad for the environment, and lithium-ion batteries, which occasionally burst into flames,” said Hongjie Dai, a professor of chemistry at Stanford. “Our new battery won’t catch fire, even if you drill through it.”

Aluminum has long been an attractive material for batteries, mainly because of its low cost, low flammability and high-charge storage capacity. For decades, researchers have tried unsuccessfully to develop a commercially viable aluminum-ion battery.  A key challenge has been finding materials capable of producing sufficient voltage after repeated cycles of charging and discharging.



An aluminum-ion battery consists of two electrodes: a negatively charged anode made of aluminum and a positively charged cathode.

“People have tried different kinds of materials for the cathode,” Dai said. “We accidentally discovered that a simple solution is to use graphite, which is basically carbon. In our study, we identified a few types of graphite material that give us very good performance.”

For the experimental battery, the Stanford team placed the aluminum anode and graphite cathode, along with an ionic liquid electrolyte, inside a flexible polymer- coated pouch.

“The electrolyte is basically a salt that’s liquid at room temperature, so it’s very safe,” said Stanford graduate student Ming Gong, co-lead author of the Nature study.

Aluminum batteries are safer than conventional lithium-ion batteries used in millions of laptops and cell phones today, Dai added.

There is still work to do to make the Aluminum battery a reality. “Our battery produces about half the voltage of a typical lithium battery,” he said. “But improving the cathode material could eventually increase the voltage and energy density. Otherwise, our battery has everything else you’d dream that a battery should have: inexpensive electrodes, good safety, high-speed charging, flexibility and long cycle life. I see this as a new battery in its early days. It’s quite exciting.”

The research has been published in the April 6 advance online edition of the journal Nature.

You /4/Like

Advertisement



Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *